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ERRATUM

Volume 136, No. 1 (1997) in the article “Cauchy—Characteristic Evolution and Wave-
forms,” by Nigel T. Bishop, Roberto G´omez, Paulo R. Holvorcem, Richard A. Matzner,
Philippos Papadopoulos, and Jeffrey Winicour, pages 140–167: On page 148, Eq. (3.3),
where one reads∂xφ, one should read∂xφ. On page 160, where one reads “Furthermore,
the extrapolated maching solutionφC1F

1−D (obtained from the solutions withRm= 234/17)
coincides...,” one should read “Furthermore, the extrapolated matching solutionφ

C1N
1−D

(obtained from the solutions withRm= 182/17) coincides....”
Also, the following figure captions were omitted:
FIG. 1. Initial Cauchy data are evolved fromt0 to time t1 throughout the regionD1− .

Characteristic data induced onC1− , combined with the initial characteristic data onC0+ are
used to evolve the regionD1+ . This produces Cauchy data at timet1 in the regionr ≤ Rm.
Similarly, Cauchy evolution is used in the regionD2− , bounded on the right byC2− . The
characteristic data induced onC2− , together with those onC1+ , are sufficient to evolve
through the regionD2+ . The process can be iterated to carry out the entire future evolution
of the system.

FIG. 2. Cauchy grid points are indicated by squares and characteristic grid points by
circles. The triangles indicate pointsE andF , where the time leveltn intersects the retarded
time levelsun−1 andun−2. Initial data are given at the shaded points. Evolution proceeds
iteratively by determining field values at the unshaded points. The matching scheme provides
boundary values atC (r = Rm) andD (r = RB+ h) for the characteristic and Cauchy grids,
respectively.

FIG. 3. Parallelogram formed by incoming and outgoing characteristics which intersect
at verticesP, Q, R, S. P Q is taken to be at retarded time levelun and RSat levelun−1.
By using the identity (2.5), the field valuegQ can be obtained in terms of already known
values ofg(r, un) (r ≤ r P) andg(r, un−1).

FIG. 4. The line AF, along which we interpolate between the Cartesian and spherical
grids, shown schematically.B is an interior boundary point,D is a nearest neighbor ofB
which is an exterior point.A is the nearest neighbor toB opposite toD, and by construction,
an interior point.E and F lie on the lineAB, on two previously computed characteristic
cones, andC is a point on the first spherical shell of the characteristic grid.

FIG. 5. For some exceptional points, the nearest neighborD can be reached along two
coordinate lines of the Cartesian grid starting from two distinct interior boundary points,B
andB′.

FIG. 6. Grid points in the(r, t) plane for the characteristic evolution used in the matching
schemes of Section III.
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FIG. 7. Results of stability tests for the matching algorithm I. The parametersα andβ
defined by (4.3) were independently varied, andρ, K were chosen according to (4.1)–(4.2)
and (2.12), respectively. The Cartesian grid size was fixed atM = 22. Stable algorithms are
obtained whenβ ≥ 1 andα≈ 1.25. The dashed curves are contours of constant Courant
numberρ (from left to right, the contours shown haveρ= 0.236, 0.151, 0.101, 0.077, and
0.062). Stable and unstable algorithms are indicated by solid and open circles, respectively.

FIG. 8. Results of stability tests for the matching algorithms C1 (a) and C2 (b). In this set
of experiments,Rm, N, h, Ng, NL , NB have the fixed values182

17 , 21, 26
51, 20, 31, 125, respec-

tively, while the remaining parameters are chosen so thathang/hrad'1/Rm1ξ ' 2.1,
sg/hang' sg/Rm1' 3.7, sL/1' 14, sB/h= 8. The independent variables in this study
areρ=1t/h andα′ = Rm1/h. The dashed horizontal line represents the upper limit onρ

imposed by the CFL condition for the Cauchy evolution(ρ ≤ 3−1/2), while the dashed line
through the origin represents the analogous limit for the characteristic evolution. Stable and
unstable algorithms are indicated by solid and open circles, respectively.

FIG. 9. Comparison between different algorithms for the solution of the forced linear
wave equation: S1 (a), C1 (b), S2 (c), C2 (d), K (e), and I (f). The forcing consists of a
superposition of four spherical harmonic sources located at various positions in the interior
computational grid (see text for details). The interface between the interior and exterior
grids is located atr = 182

17 . In (a)–(d), the maximum errors at the grid points (4.5)–(4.6)
are shown for the selected times (4.4), using the discretizations N4/3 (open triangles),
N1 (open squares), N4/5 (open circles), N2/3 (solid triangles), and N1/2 (solid circles). In
(e), the maximum errors are shown for the same selected times and grid points using the
discretizations N′′4/3 (open triangles) and N′′1 (open squares). In (f), the maximum errors at
the grid points (4.9)–(4.10) are shown for the selected times (4.4), using the discretizations
N′4/3 (open triangles), N′4/5 (open circles), and N′4/7 (solid squares). In each case, the errors
resulting from applying Richardson extrapolation to the results for the finest grids (N2/3

and N1/2, or N′4/5 and N′4/7, or N′′4/3 and N′′1) are indicated by star symbols. An analogous
set of tests using the discretizations with interface atr = 234

17 (Fλ,F′λ, and F′′λ) yields similar
results for all the above algorithms. For comparison, the maximum value of|φ| during the
evolution is about 1.4.

FIG. 10. Errors at radiative infinity resulting from three matching schemes for the
solution of the forced linear wave equation: C1 (a), C2 (b), and I (c). The forcing and
the discretizations employed are the same as in Fig. 9; the numerical solutions with differ-
ent resolutions are also indicated by the same symbols. Maximum errors are shown for the
selected characteristic cones (4.7), and the errors resulting from applying Richardson ex-
trapolation to the results for the finest grids (N2/3 and N1/2 or N′4/5 and N′4/7) are indicated
by star symbols. In (a)–(b), since the numerical solutions of different resolutions utilize
distinct triangulations of the unit sphere, Richardson extrapolation had to be preceded by an
interpolation into a common set of angular directions (this was chosen as the triangulation
used in discretization N4/3). The interpolation method had errorO(14) and should not in-
troduce a significant loss of precision. In (c), the extrapolation technique was applied at the
angular directions with stereographic coordinatesp= k/8,q= l/8(k, l =−8,−7, . . . ,8),
which are common to discretizations N′4/5 and N′4/7. An analogous set of tests using the
discretizations with interface atr = 234

17 (Fλ and F′λ) yields similar results for all the above
algorithms. For comparison, the maximum value of|g| during the evolution is about 2.5.

FIG. 11. Comparison between different one-dimensional algorithms for the solution of
the forced nonlinear wave equation (4.15). The forcing has spherical symmetry about the
origin (see text for details). The data shown in the figure correspond to‖φC1F

1−D −φ1−D‖2
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(stars),‖φC1N
1−D −φC1F

1−D‖2 (solid circles), and‖φS2F
1−D −φ1−D‖2 (open triangles). The notation

for the various numerical solutions is explained in the text. The notation‖ · ‖2 denotes the
r.m.s. value over the grid points (4.5)–(4.6) (in order to facilitate comparisons with the three-
dimensional runs, each one-dimensional solution was interpolated onto these selected grid
points, and the r.m.s. value computed as a three-dimensional average). For comparison, the
r.m.s. value ofφ is between 0.04 and 0.16 during most of the evolution.

FIG. 12. Comparison between different three-dimensional algorithms for the solution of
the forced nonlinear wave equation (4.15): S1 (a), C1 (b), S2 (c), C2 (d), K (e), and I (f). The
forcing has spherical symmetry about the origin (see text for details), and the discretizations
are the same as in Fig. 9. In (a)–(e), the r.m.s. errors over the grid points (4.5)–(4.6) are
shown for the selected times (4.4). In (f), the r.m.s. errors are evaluated over the grid points
(4.9)–(4.10) for the same selected times. The exact solution is approximated to high accuracy
by a numerical solutionφ1−D produced by a one-dimensional finite-difference code which
solves the spherically symmetric version of (4.15). For comparison, the r.m.s. value ofφ is
between 0.04 and 0.16 during most of the evolution.

FIG. 13. Sensitivity of the numerical solutions of (4.15) by different algorithms with
respect to changes in the radius of the interior computational grid. The forcing distri-
bution has its support on two ellipsoids (see text for details). Using the notation for
extrapolated solutions defined at the end of Section IV.B, the data shown in the figure
correspond to‖φS1N

2/3,1/2−φS1F
4/5,2/3‖2 (open triangles),‖φS2N

2/3,1/2−φS2F
4/5,2/3‖2 (open squares),

‖φK N ′′
4/3,1−φK F ′′

2,4/3‖2 (open circles),‖φC1N
2/3,1/2−φC1F

4/5,2/3‖2 (solid triangles),‖φC2N
2/3,1/2−φC2F

4/5,2/3‖2
(solid squares), and‖φ I N ′

4/5,4/7−φ I F ′
4/3,4/5‖2 (solid circles). The r.m.s. differences are evalu-

ated over either the grid points (4.5)–(4.6) (for algorithms C1, C2, S1, S2, and K) or the grid
points (4.9)–(4.10) (for algorithms I), at the selected times (4.4). For comparison, the r.m.s.
value ofφ is between 0.04 and 0.08 during most of the evolution.

FIG. 14. Sensitivity of the numerical solutions of (4.15) by different algorithms with
respect to changes in the order of the boundary conditions. The forcing distribution has
its support on two ellipsoids (see text for details). Using the notation for extrapolated
solutions defined at the end of Section IV.B, the data shown in the figure correspond
to ‖φS1N

2/3,1/2−φS2N
2/3,1/2‖2 (open triangles),‖φS1F

4/5,2/3−φS2F
4/5,2/3‖2 (open squares),‖φC1N

2/3,1/2−
φ

C2N
2/3,1/2‖2 (solid triangles), and‖φC1F

4/5,2/3−φC2F
4/5,2/3‖2 (solid squares). The r.m.s. differences

are evaluated over the grid points (4.5)–(4.6), at the selected times (4.4). For comparison,
the r.m.s. value ofφ is between 0.04 and 0.08 during most of the evolution.

FIG. 15. Errors in the evaluation of the Gaussian function (B14) atx= y= z= 1
2 by

several multiquadric-based approximations. The curves labeledp=−1 and p= 0 corre-
spond respectively to the uncorrected multiquadric approximation and the interpolation
formula with normalized coefficientŝcµ. The remaining curves represent the errors in cor-
rected multiquadric interpolation formulas with errorO(λp+1), p= 1, 2, 3, 5. The ratio
max|δµ|/max|ĉµ|, which measures the size of the corrections, is smaller than 0.044 for all
the above corrected approximations.

FIG. 16. Errors in the evaluation of the second derivative of the Gaussian function
(B14) with respect tox atx= y= z= 1

2 by several multiquadric-based approximations. The
curve labeledp=−1 corresponds to the uncorrected multiquadric approximation, and the
remaining curves represent the errors in corrected multiquadric finite-difference formulas
with errorO(λp−1), p= 0, 1, 2, 3, 5. The ratio max|δµ|/max|c̃µ|, which measures the size
of the corrections, is smaller than 0.097 for all the above corrected approximations.
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